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Abstract 

This paper is about financial models based on diffusion. And such models are 
represented by the Stochastic differential equation (SDE) driven by a Brownian 
motion. In this paper we are considering local volatility models and stochastic 
volatility models. These models are solving the shortcomings of Black-Scholes 
model namely by assuming that the volatility of the underlying price is a stochastic 
process rather than a constant, it becomes possible to model derivatives more 
accurately. Models like Carr-Madan and Black-Scholes Fourier pricing were 
presented before the previous two classes of models. In the class of stochastic 
volatility models SABR STOCHASTIC 𝛼𝛼,𝛽𝛽,𝜌𝜌 model along with Heston model 
and displaced diffusion DD models are their main representatives in this paper. 
When it comes to market and model comparison this paper concludes that SABR 
model, Displaced diffusion (DD) model and Heston model are very close to market 
results, when it comes to implied volatility and strike price (SABR, DD) and Heston 
model are better when compared implied volatility with moneyness (strike price 
/spot price). 
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1. INTRODUCTION 
 
This paper will deal with financial models that are based on diffusion 
processes. While the Black-Scholes(1973) model is the simplest formulation 
for derivative pricing and  is still utilized, there is a flaw of that model when 
volatility surfaces, a situation which implies different  underlying parameters 
for every quoted option, so in that situation Black-Scholes(1973)model is 
unable to correctly predict the evolution of prices of the underlying asset, see 
Hirsa (2012). But the first explicit general equilibrium solution to the option 
pricing problem for simple puts and call was presented in Black,Scholes(BS) 
(1973) and Merton (BSM) (1973) all this four paper by Merton 1973 a,Merton 
1973 b, Merton1973 c ,Merton 1975 , provides, within the Capital Asset 
Pricing Model(CAPM) framework, an elegant answer to the problem of 
assigning price to every option by identifying a relation between the value of 
the stock and its option. Important information is modeled as a jump-process 
because it arrives at discrete times, Merton (1975). These models in order to 
be consistent with the Efficient market hypothesis (EMH) see Fama (1970) 
(i.e. that asset prices fully reflect the information), the unanticipated part of the 
stock price movements should be a martingale (conditional expectation of the 
next value of the sequence, given all prior information, is equal to the present 
value). The relationship between implied volatility and exercise price is not 
constant and may look like a smile, a skew, etc. (for simplicity are all called 
“smiles”) see Orlando,G.,  Taglialatela(2017). Implied volatility is calculated 
by taking the observed option price in the market and a pricing formula such 
as the Black-Scholes formula that will be introduced below and backing out 
the volatility that is consistent with the option price given other input 
parameters such as the strike price of the option, for example ,see 
Kosowski,Neftci (2015). 1  

 

 

 

 

 
1 There is a distinction between implied volatility and actual volatility, later is realized 
volatility.  
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Local volatility models can be traced back to the work by Dupire, B. (1994) 
and Derman, E. ,Kani, I. (1994). The Black-Scholes theory relies on two 
assumptions: the values of contingent claims do not depend on investor 
preferences; therefore, the option can be valued as though the underlying 
stock’s expected return is riskless. 2Second assumption, is that stock prices 
evolve log-normally with constant local volatility 𝜎𝜎𝜈𝜈. 3 But market option 
prices are not consistent with Black-Scholes formula. Some models and 
formulas that account better for volatility when stock price is close to strike 
price include: Brenner, Subrahmanyam (1998), Bharadia, Christofides and 
Salkin Formula (1995). For these previous two formulas the accuracy of the 
approximation worsens as soon as the option departs from the at-the-money 
position (ATM). Next, this paper will introduce a class (not all of them) of 
stochastic volatility models that are extending the classic Black-Scholes or 
local volatility framework. These models are modeling not just the skew but 
the smile also. Overall, the more out-of-the-money(OTM) (Spot- Strike < 0) a 
call (put) option is, the higher is the corresponding implied volatility. This 
well-established empirical fact is known as the volatility smile, or volatility 
skew, and has major implications for hedging, pricing, and marking-to-market 
of many important instruments. In statistics, stochastic volatility models are 
those in which the variance of a stochastic process is itself randomly 
distributed. Here we will review and set computational examples for: SABR 
model, Heston model, Displaced diffusion model and implied volatility by 
Newton-Rapshon method. But paper first starts with Black-Scholes Fourier 
pricing and Carr-Madan (1999) method as representatives of option pricing by 
transform techniques and direct integration.   

 
2 The risk neutral valuation is allowed because the option can be hedged with stock to create 
instantaneously riskless portfolio.  
3 The stock evolution is described simple as: 

𝑑𝑑𝑑𝑑
𝑑𝑑 = 𝜇𝜇𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜇𝜇𝜎𝜎 , where 𝜇𝜇 is the expected return 

𝜇𝜇 = 𝑟𝑟 − 𝑞𝑞 ,risk free rate minus dividend, 𝑆𝑆 is the stock price, 𝜇𝜇𝜎𝜎 is a Wiener process 𝜎𝜎 ∼
(0,𝜇𝜇𝜇𝜇)  
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2. BLACK-SCHOLES FOURIER PRICING  

2.1 Characteristic function, Levy process, Fourier transform  
 
Characteristic function of payoff is available analytically for all levy processes. 

4 Levy process- 𝐿𝐿 let be is an infinite divisible random variable ∀𝑡𝑡 ∈ [0,∞]  
✓ L can be written as the sum of a diffusion, a continuous Martingale, 5 

and a pure jump process; i.e: 
 
                     𝐿𝐿𝑡𝑡 = 𝑎𝑎𝑡𝑡 + 𝜎𝜎𝐵𝐵𝑡𝑡 + ∫ 𝑥𝑥𝑥𝑥�̃�𝑁𝜏𝜏|𝑥𝑥|<1 + ∫ 𝑥𝑥𝑥𝑥𝑁𝑁𝜏𝜏|𝑥𝑥|≥1 (∙,𝑥𝑥𝑥𝑥),∀𝑡𝑡 ≥ 0                  (1)  

 
In previous expression ∈ ℜ , 𝐵𝐵𝑡𝑡 is the standard Brownian motion, 𝑁𝑁  is defined 
to be the Poisson random measure of the Lèvy process. 
✓ Lèvy -Khintchine formula: from the previous property it can be shown 

that for ∀𝜏𝜏 ≥ 0 one has that : 
 

𝐸𝐸|𝑒𝑒𝑖𝑖𝑖𝑖𝐿𝐿𝑡𝑡| = 𝑒𝑒^(−𝜏𝜏𝜏𝜏(𝑢𝑢)
𝜏𝜏(𝑢𝑢) = −𝑖𝑖𝑎𝑎𝑢𝑢 + 𝜎𝜎2

2 𝑢𝑢
2 + ∫ (1 − 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥)𝑥𝑥𝑑𝑑(𝑥𝑥) + ∫ (1 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 + 𝑖𝑖𝑢𝑢𝑥𝑥)𝑥𝑥𝑑𝑑(𝑥𝑥)|𝑥𝑥|<1|𝑥𝑥|≥1

(2) 
𝑎𝑎 ∈ ℜ;𝜎𝜎 ∈ [0,∞); 𝑑𝑑 > 0 borel measure and 𝜎𝜎 is Lèvy measure. More so 
𝑑𝑑(∙) = 𝐸𝐸[𝑁𝑁1(∙,𝐴𝐴)]See Applebaum (2004).Log normal process that we are 
considering here is: 

 

 log 𝑆𝑆𝑡𝑡+∆𝑡𝑡
𝑆𝑆𝑡𝑡

∼ 𝒩𝒩 ((𝑟𝑟 − 𝑞𝑞 − 1
2 𝜎𝜎

2)∆𝑡𝑡,𝜎𝜎2∆𝑡𝑡)                                        

   (3) 
 
Where 𝑆𝑆𝑡𝑡is stock price at time 𝑡𝑡  and 𝜎𝜎 is stock price volatility,𝑟𝑟 is a risk-free 
interest rate and 𝑞𝑞 is the dividend rate. Characteristic function is given as: 

                                   𝜏𝜏(𝜉𝜉) = exp [𝑖𝑖𝜉𝜉 (𝑟𝑟 − 𝑞𝑞 − 1
2 𝜎𝜎

2)∆𝑡𝑡 − 1
2 𝜉𝜉

2𝜎𝜎2∆𝑡𝑡] (4) 

 

 
4 Characteristics function of any real-valued random variable completely defines its 
probability distribution. Sometimes characteristic functions are denoted by using so called 
Iverson bracket see Iverson (1962) or as an indicator function 𝐹𝐹𝑥𝑥(𝑥𝑥) = 𝐸𝐸(𝟏𝟏{𝑋𝑋≤𝑥𝑥}) ,see 
Abramowitz, M. ,Stegun (1972). 
5 A sequence of random numbers 𝑋𝑋0,𝑋𝑋1, .. with finite means and conditional expectation of 
𝑋𝑋𝑖𝑖+1|𝑋𝑋0, … ,𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖 i.e., 〈𝑋𝑋𝑖𝑖+1|𝑋𝑋0, … ,𝑋𝑋𝑖𝑖〉 = 𝑋𝑋𝑖𝑖 
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Or in general characteristic function for random variable 𝑋𝑋 is given as: 
𝜑𝜑:ℝ → ℂ, and : 
                                    𝜑𝜑(𝑢𝑢) ↦ 𝔼𝔼[exp(𝑖𝑖𝑢𝑢𝑋𝑋)] = ∫ exp(𝑖𝑖𝑢𝑢𝑖𝑖)𝑑𝑑𝑑𝑑(𝑖𝑖)+∞

−∞  (5) 
The characteristic exponent is logarithm of the characteristic function,6 or 
𝜓𝜓 = log(𝜑𝜑(𝑢𝑢)),and the n-th moment of the random variable if ∃𝔼𝔼[𝑋𝑋𝑛𝑛] is : 

 𝔼𝔼[𝑋𝑋𝑛𝑛] = 𝑖𝑖−𝑛𝑛 𝑑𝑑
𝑑𝑑𝑢𝑢𝑛𝑛 𝜑𝜑(𝑢𝑢)|𝑢𝑢=0 

  (6) 
 
See Kienitz, Wetterau (2012) on this part, here also cumulant function 𝑘𝑘, 
moment generating function, 𝜃𝜃, and cumulant characteristic function are 
given as:  

 {
𝑘𝑘(𝑢𝑢) = log(𝜑𝜑(𝑖𝑖𝑢𝑢))
𝜃𝜃(𝑢𝑢) = 𝜑𝜑(𝑖𝑖𝑢𝑢)

𝜑𝜑(𝑢𝑢) = log𝜑𝜑(𝑢𝑢)
 (7) 

 
 
Where 𝑖𝑖 = √−1  is an imaginary number, the payoff for European vanilla 
option,𝑔𝑔 is given as: 

 𝑔𝑔(𝑆𝑆𝑇𝑇) = max(𝜃𝜃(𝑆𝑆𝑇𝑇 − 𝐾𝐾), 0) = (𝜃𝜃(𝑆𝑆𝑇𝑇 − 𝐾𝐾))+ (8) 
Where 𝑆𝑆𝑇𝑇 is the stock price at maturity 𝑇𝑇, 𝐾𝐾 is the strike price and 𝜃𝜃 = 1  for 
call and 𝜃𝜃 = −1  for put. Payoff is equal to log of price: 𝑖𝑖 = log 𝑆𝑆𝑇𝑇

𝑆𝑆0
; log strike 

is:𝑘𝑘 = log 𝐾𝐾
𝑆𝑆0

,lower log-barrier is: 𝑙𝑙 = log 𝐿𝐿
𝑆𝑆0

; upper log-barrier is : 𝑢𝑢 = log 𝑈𝑈
𝑆𝑆0

. 

So now the payoff function becomes:  

 𝑔𝑔(𝑖𝑖) = 𝑒𝑒𝑎𝑎𝑎𝑎𝑆𝑆0(𝜃𝜃(𝑒𝑒𝑎𝑎 − 𝑒𝑒𝑘𝑘))
+
𝟙𝟙[𝑙𝑙𝑢𝑢](𝑖𝑖)  (9) 

 
 
 
 
 
 

 
6 CDF: 𝑑𝑑(𝑖𝑖) = 1

2 + 1
2𝜋𝜋 ∫

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝜑𝜑(−𝑢𝑢)−𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝜑𝜑(𝑢𝑢)
𝑖𝑖𝑢𝑢 𝑑𝑑𝑢𝑢 +∞

−∞ ; PDF:𝑓𝑓(𝑖𝑖) = 1
2𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑢𝑢𝑎𝑎𝜑𝜑(𝑢𝑢)𝑑𝑑𝑢𝑢 =+∞

−∞
1
𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖𝑢𝑢𝑎𝑎𝜑𝜑(𝑢𝑢)𝑑𝑑𝑢𝑢 ∞

0  
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The Fourier transform is given as: 
 
 �̂�𝑔(𝜉𝜉) = ℱ𝑥𝑥→𝜉𝜉[𝑔𝑔(𝑥𝑥)] = ∫ 𝑒𝑒𝑖𝑖𝜉𝜉𝑥𝑥𝑒𝑒𝑎𝑎𝑥𝑥𝑆𝑆0(𝜃𝜃(𝑒𝑒𝑥𝑥 − 𝑒𝑒𝑘𝑘))+𝟙𝟙[𝑙𝑙𝑙𝑙](𝑥𝑥)ℝ 𝑑𝑑𝑥𝑥 = 𝑆𝑆0 ∫ 𝑒𝑒(𝑖𝑖𝜉𝜉+𝑎𝑎)𝑥𝑥(𝜃𝜃(𝑒𝑒𝑥𝑥 −𝑙𝑙

𝑙𝑙

𝑒𝑒𝑘𝑘))+𝑑𝑑𝑥𝑥 = 𝑆𝑆0 ∫ 𝑒𝑒(1+𝑖𝑖𝜉𝜉+𝑎𝑎)𝑥𝑥𝑑𝑑𝑥𝑥 + 𝑆𝑆0 ∫ 𝑒𝑒𝑘𝑘+)𝑖𝑖𝜉𝜉+𝑎𝑎)𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑆𝑆0 (
𝑒𝑒(1+𝑖𝑖𝑖𝑖+𝑎𝑎)𝜂𝜂−𝑒𝑒(1+𝑖𝑖𝑖𝑖+𝑎𝑎)𝑣𝑣

1+𝑖𝑖𝜉𝜉+𝑎𝑎 −𝜂𝜂
𝑣𝑣

𝜂𝜂
𝑣𝑣

𝑒𝑒𝑘𝑘+(𝑖𝑖𝑖𝑖+𝑎𝑎)𝜂𝜂−𝑒𝑒𝑘𝑘+(𝑖𝑖𝑖𝑖+𝑎𝑎)𝑣𝑣

𝑖𝑖𝜉𝜉+𝑎𝑎 )                (10)                                                                                                                                         
  
 

Where 𝜂𝜂 = {𝑢𝑢 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑢𝑢𝑝𝑝  and 𝑣𝑣 = {max(𝑘𝑘, 𝑐𝑐)𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

min(𝑘𝑘,𝑢𝑢)𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑢𝑢𝑝𝑝..In order to find the 

option value 𝑉𝑉 we need to discount the expected payoff : 
 𝑉𝑉 = 𝑒𝑒𝑟𝑟𝑟𝑟𝔼𝔼[𝑔𝑔(𝑋𝑋𝑟𝑟)𝑒𝑒𝑟𝑟

−𝑎𝑎𝑋𝑋𝑇𝑇|𝑋𝑋0 = 0] = 𝑒𝑒−𝑟𝑟𝑟𝑟 ∫ 𝑔𝑔(𝑋𝑋𝑟𝑟)𝑒𝑒𝑟𝑟
−𝑎𝑎𝑋𝑋𝑇𝑇𝑓𝑓𝑥𝑥(𝑥𝑥,𝑇𝑇)𝑑𝑑𝑥𝑥ℝ  

 (11) 
 
 
Where 𝑒𝑒𝑟𝑟

−𝑎𝑎𝑋𝑋𝑇𝑇 I the undamping factor and 𝑓𝑓  is the PDF of 𝑋𝑋𝑡𝑡 .Now thanks to 
Parseval-Plancherel theorem integral can be computed in Fourier space:  

 𝑉𝑉 = 𝑒𝑒−𝑟𝑟𝑇𝑇
2𝜋𝜋 ∫ �̂�𝑔(𝜉𝜉)𝜓𝜓∗(𝜉𝜉 + 𝑖𝑖𝑐𝑐,𝑇𝑇)𝑑𝑑𝜉𝜉ℝ   (12) 

 
 
Where 𝜓𝜓(𝜉𝜉, 𝑝𝑝) = 𝑓𝑓𝑥𝑥(𝑥𝑥, 𝑝𝑝) is the characteristic function of 𝑋𝑋𝑡𝑡 , and * denotes 
complex conjugate, we can include undamping 𝜓𝜓∗(𝜉𝜉 + 𝑖𝑖𝑐𝑐,𝑇𝑇)factor due to 
shift theorem  
 

2.2 Parseval-Plancherel theorem 
 
Plancherel theorem (sometimes called the Parseval–Plancherel identity) is a 
result due to Plancherel (1910). 
 
Theorem 1 : Parseval–Plancherel theorem  
                                     ∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔∗(𝑥𝑥)𝑑𝑑𝑥𝑥 = 1

2𝜋𝜋 ∫ 𝑓𝑓(𝜉𝜉)�̂�𝑔∗(𝜉𝜉)𝑑𝑑𝜉𝜉ℝℝ   (13) 
 Proof:  in the LHS we have : 
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𝑓𝑓(𝑥𝑥) = ℱ𝜉𝜉→𝑥𝑥−1 [𝑓𝑓(𝜉𝜉)] = 1

2𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑥𝑥𝜉𝜉�̂�𝑔∗(𝜉𝜉)𝑑𝑑𝜉𝜉 ℝ

𝑔𝑔(𝑥𝑥) = ℱ𝜉𝜉→𝑥𝑥−1 [�̂�𝑔(𝜉𝜉)] = 1
2𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑥𝑥𝜉𝜉�̂�𝑔(𝜉𝜉)𝑑𝑑𝜉𝜉 ℝ

 (14) 

 
Since (𝑎𝑎𝑎𝑎)∗ = 𝑎𝑎∗𝑎𝑎∗, (𝑒𝑒−𝑖𝑖𝑥𝑥𝜉𝜉)∗ = 𝑒𝑒+𝑖𝑖𝑥𝑥𝜉𝜉   and so we have: 𝑔𝑔∗(𝑥𝑥) =
1
2𝜋𝜋 ∫ 𝑒𝑒𝑖𝑖𝑥𝑥𝜉𝜉�̂�𝑔∗(𝜉𝜉)𝑑𝑑𝜉𝜉ℝ and henceforth : 

 

∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔∗(𝑥𝑥)𝑑𝑑𝑥𝑥 = 1
(2𝜋𝜋)2 ∫ (∫ 𝑒𝑒−𝑖𝑖𝑥𝑥𝜉𝜉𝑓𝑓(𝜉𝜉)𝑑𝑑𝜉𝜉ℝ )(∫  𝑒𝑒𝑖𝑖𝑥𝑥𝜉𝜉′𝑔𝑔∗(𝜉𝜉′)𝑑𝑑𝜉𝜉′ℝ )𝑑𝑑𝑥𝑥 =ℝℝ

1
2𝜋𝜋 ∫ ∫ 𝑓𝑓(𝜉𝜉)𝑔𝑔∗(𝜉𝜉′) 1

2𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖(𝜉𝜉−𝜉𝜉′)𝑥𝑥𝑑𝑑𝑥𝑥𝑑𝑑𝜉𝜉′𝑑𝑑𝜉𝜉ℝ  ℝℝ   (15) 

 
Since 

1
2𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖(𝜉𝜉−𝜉𝜉′)𝑥𝑥𝑑𝑑𝑥𝑥 = 𝛿𝛿(𝜉𝜉 − 𝜉𝜉′)ℝ  , where 𝛿𝛿 is Dirac delta see Dirac (1958).7 

 

{
 

 ∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔∗(𝑥𝑥)𝑑𝑑𝑥𝑥 = 1
2𝜋𝜋 ∫ 𝑓𝑓(𝜉𝜉)∫ 𝑔𝑔∗(𝜉𝜉′)𝛿𝛿(𝜉𝜉 − 𝜉𝜉′)𝑑𝑑𝜉𝜉′𝑑𝑑𝜉𝜉 ℝℝℝ

∫ 𝑔𝑔∗(𝜉𝜉′)𝛿𝛿(𝜉𝜉 − 𝜉𝜉′)𝑑𝑑𝜉𝜉′ = 𝑔𝑔∗(𝜉𝜉) ℝ
∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔∗(𝑥𝑥)𝑑𝑑𝑥𝑥 = 1

2𝜋𝜋ℝ ∫ 𝑓𝑓(𝜉𝜉)�̂�𝑔∗(𝜉𝜉)𝑑𝑑𝜉𝜉 ℝ ∎
  (16) 

 
 

2.3 Shift theorem  
 
Theorem 2 : Shift theorem  
 
                                                   ℱ𝑥𝑥→𝜉𝜉[𝑓𝑓(𝑥𝑥)𝑒𝑒−𝑎𝑎𝑥𝑥] = 𝑓𝑓(𝜉𝜉 + 𝑖𝑖𝑎𝑎)  (17) 
 
Proof:  
         ℱ𝑥𝑥→𝜉𝜉[𝑓𝑓(𝑥𝑥)𝑒𝑒−𝑎𝑎𝑥𝑥] = ∫ 𝑒𝑒𝑖𝑖𝑥𝑥𝜉𝜉𝑒𝑒−𝑎𝑎𝑥𝑥𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = ∫ 𝑒𝑒𝑖𝑖(𝜉𝜉+𝑖𝑖𝑎𝑎)𝑥𝑥𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 =ℝℝ
𝑓𝑓(𝜉𝜉 + 𝑖𝑖𝑎𝑎)∎   (18) 
Where we were using the fact that 𝑖𝑖2 = −1.  
 
 

 
7 The delta function is sometimes called Dirac's delta function or the "impulse symbol" 
,Bracewell (2000),delta function can be viewed as derivative of Heaviside step function: 
𝑑𝑑
𝑑𝑑𝑥𝑥 [𝐻𝐻(𝑥𝑥)] = 𝛿𝛿(𝑥𝑥),and has a fundamental property ∫ 𝑓𝑓(𝑥𝑥)𝛿𝛿(𝑥𝑥 − 𝑎𝑎)𝑑𝑑𝑥𝑥𝑓𝑓(𝑎𝑎),∀𝜖𝜖 = 0𝑎𝑎+𝜖𝜖

𝑎𝑎−𝜖𝜖  
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Figure 1. Black -Scholes method Fourier pricing and Carr-Madan option pricing with 
one and more 𝜶𝜶 dampening parameters 

 
 

Source: Authors own calulation inPython and code available at: 
https://github.com/MalutiKgarose/Option-prices-using-FFT/blob/master/FFTvsAnalytical%20Black-

Scholes.ipynb 
 
Carr-Madan (1999) model, call price is given as:𝐶𝐶(𝐾𝐾,𝑇𝑇) = ∫ 𝑒𝑒−𝑟𝑟𝑟𝑟(𝑒𝑒𝑦𝑦 −∞

𝑘𝑘
𝑒𝑒𝑘𝑘)𝑓𝑓(𝑦𝑦|𝑥𝑥)𝑑𝑑𝑦𝑦;𝐶𝐶(𝐾𝐾,𝑇𝑇) → 𝑆𝑆(0);𝐾𝐾 → 0;∨ 𝑘𝑘 → ∞  Parameter 𝛼𝛼 is called 
dampening parameter. 
 
And the call price will be :𝑐𝑐(𝑘𝑘,𝑇𝑇) ≔ 𝑒𝑒𝛼𝛼𝑘𝑘𝐶𝐶(𝐾𝐾,𝑇𝑇). Fourier transform of call 
function is: 8 
 𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜈𝜈) = ∫ 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘𝑐𝑐(𝑘𝑘,𝑇𝑇)𝑑𝑑𝑘𝑘+∞

−∞    (19) 
 

 
8 Upper bound is: 𝛼𝛼𝑉𝑉𝑉𝑉_ sup = − 𝜃𝜃

𝜎𝜎2 + √𝜃𝜃2
𝜎𝜎4 + 2

𝜎𝜎2𝑖𝑖 − 1 where 𝑉𝑉𝑉𝑉  is variance gamma model, 

and 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = − 𝜃𝜃
𝜎𝜎2 + √𝜃𝜃2

𝜎𝜎4 + 2
𝜎𝜎2𝑖𝑖 (1 − exp ( 𝑖𝑖𝜈𝜈𝜈𝜈

1−𝑒𝑒−𝜈𝜈𝜈𝜈) − 1   
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In the case of European call option : 

𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜈𝜈) = ∫ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 ∫ 𝑒𝑒−𝑟𝑟𝑟𝑟+𝛼𝛼𝑖𝑖(𝑒𝑒𝑦𝑦 − 𝑒𝑒𝑖𝑖)𝑓𝑓(𝑦𝑦|𝑥𝑥)𝑑𝑑𝑦𝑦𝑑𝑑𝑑𝑑
+∞

𝑖𝑖

+∞

−∞

= 𝑒𝑒−𝑟𝑟𝑟𝑟𝜑𝜑(𝜈𝜈 − (𝛼𝛼 + 1)𝑖𝑖)
𝛼𝛼2 + 𝛼𝛼 − 𝜈𝜈2 + 𝑖𝑖(2𝛼𝛼 + 1)𝜈𝜈 

When 𝑑𝑑 = log(𝐾𝐾) : 

 𝐶𝐶(𝑑𝑑,𝑇𝑇) = 𝑒𝑒−𝛼𝛼𝛼𝛼
𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖∞

0 𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜈𝜈)𝑑𝑑𝑑𝑑   (20) 

 
 
Black-Scholes analytical formulas will help us to plot put and call surfaces 
here. The value of call option at time 𝑡𝑡  is equal to: 
 𝐶𝐶(𝑆𝑆, 𝑡𝑡) = 𝑆𝑆𝑡𝑡𝑒𝑒−𝑞𝑞𝑡𝑡 𝑁𝑁(𝑑𝑑1) − 𝐾𝐾𝑒𝑒𝑟𝑟𝑡𝑡𝑁𝑁(𝑑𝑑2)   (21) 
Where : 

                 {𝑑𝑑1 = log𝑆𝑆𝑡𝑡𝐾𝐾+(𝑟𝑟−𝑞𝑞+
1
2𝜎𝜎

2)𝜏𝜏
𝜎𝜎√𝜏𝜏

𝑑𝑑2 = 𝑑𝑑1 = −𝜎𝜎√𝜏𝜏
 (22) 

 
 
Where 𝑆𝑆𝑡𝑡 is the stock price at time  , 𝑇𝑇 is the expiration rate, 𝜏𝜏 is time to 
maturity, i.e. 𝜏𝜏 = 𝑇𝑇 − 𝑡𝑡, 𝐾𝐾 is the strike price,𝑟𝑟 is the risk free interest rate . 𝑞𝑞 
is the dividend rate, 𝜎𝜎 is the stock volatility 𝒩𝒩 is the CDF of cumulative 
standard normal distribution function defined as: 
 

 𝒩𝒩(𝑥𝑥) = 1
2𝜋𝜋 ∫ 𝑒𝑒−

1
2𝜙𝜙

2𝑑𝑑𝑑𝑑𝑥𝑥
−∞   (23) 

 
The value of a put option is given as: 
 𝑃𝑃(𝑆𝑆𝑡𝑡, 𝑡𝑡) = 𝐾𝐾𝑒𝑒−𝑟𝑟𝑡𝑡𝒩𝒩(−𝑑𝑑2) − 𝑆𝑆𝑡𝑡𝑒𝑒−𝑞𝑞𝑡𝑡𝒩𝒩(−𝑑𝑑1)  (24) 
 
 
Next we are plotting Call-Value and Put-value and (S,T,v) 
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Figure 2. Call value , Put value and 𝑺𝑺, 𝒕𝒕,𝒗𝒗 

 
Source: Author’s calculations based on a code available at:  https://github.com/Robin-Guilliou/Option-

Pricing/tree/main/European%20Options 
 
 
 

3. SABR MODEL (STOCHASTIC 𝜶𝜶,𝜷𝜷,𝝆𝝆 MODEL) AND DISPLACED 
DIFFUSION (DD) MODELS 
 
 
In this part we are taking into consideration SABR or stochastic volatility 
(stochastic 𝛼𝛼,𝛽𝛽 , 𝜌𝜌) model introduced in Hagan, P.S., Kumar, D., Lesniewski, 
A.S., Woodward, D.E. (2002). SDEs of the model are given as: 
 

 

{
 
 

 
 𝑑𝑑𝑆𝑆𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑆𝑆𝑡𝑡

𝛽𝛽𝑑𝑑𝑊𝑊𝑡𝑡
𝑑𝑑𝜎𝜎𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑣𝑣𝑑𝑑𝑍𝑍𝑡𝑡
𝑆𝑆(0) = 𝑆𝑆0
𝜎𝜎(0) = 𝜎𝜎0

〈𝐷𝐷𝑊𝑊𝑡𝑡 ,𝑑𝑑𝑍𝑍𝑡𝑡〉 − 𝜌𝜌𝑑𝑑𝜌𝜌 

 (25) 
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Here 𝑆𝑆0 is the spot asset price and 𝜎𝜎0 is the spot value of volatility. The other 
model parameters are the CEV parameter (constant elasticity of variance) 𝛽𝛽, 9 
the volatility of volatility 𝜈𝜈 and the correlation ρ between the Brownian 
motions 𝑊𝑊 and 𝑍𝑍 driving the asset and the volatility dynamics. The original 
SABR pricing formulae is given as: 

 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐾𝐾,𝑇𝑇) ≈ 𝜎𝜎0

(𝑆𝑆𝑆𝑆)
1−𝛽𝛽
2 (1+(1−𝛽𝛽)2

24 log2(𝑆𝑆𝐾𝐾)+
(1−𝛽𝛽)4
1920 log4(𝐹𝐹𝐾𝐾)+..)

𝑧𝑧
𝑥𝑥(𝑧𝑧)  (1 + ( (1−𝛽𝛽)2𝜎𝜎02

24(𝑆𝑆𝑆𝑆)1−𝛽𝛽 + 𝜌𝜌𝛽𝛽𝜌𝜌𝜎𝜎0

4(𝑆𝑆𝑆𝑆)
1−𝛽𝛽
2  

+

𝜈𝜈2 2−3𝜌𝜌
2

24 )𝑇𝑇 + ⋯ ) (26) 

 
 
 

Where =
𝜈𝜈
𝛼𝛼(𝑓𝑓𝑆𝑆)

1−𝛽𝛽
2 𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓
𝑆𝑆  ; and 𝑥𝑥(𝑧𝑧) = log {√1−2𝜌𝜌𝑧𝑧+𝑧𝑧

2+𝑧𝑧−𝜌𝜌
1−𝜌𝜌 } for the special case of 

ATM (at the money ) options : 

 𝜎𝜎𝑆𝑆𝐴𝐴𝐴𝐴 = 𝜎𝜎𝑆𝑆(𝑓𝑓, 𝑓𝑓) = 𝛼𝛼
𝑓𝑓(1−𝛽𝛽) {1 + [(1−𝛽𝛽)2

24 + 𝛼𝛼2
𝑓𝑓2−2𝛽𝛽 + 1

4
𝜌𝜌𝛽𝛽𝛼𝛼𝜌𝜌
𝑓𝑓(1−𝛽𝛽) + 2−3𝜎𝜎2

24 𝜈𝜈2] 𝑡𝑡𝑒𝑒𝑥𝑥  +. } 
 (27) 
 
 
See Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E. (2002) . Next 
we will graphically depict SABR model with implied volatility :𝑑𝑑 𝑆𝑆𝑡𝑡  =
 𝑟𝑟 𝑆𝑆𝑡𝑡𝑑𝑑𝑡𝑡 +  𝝈𝝈 𝑆𝑆(𝑡𝑡)𝑑𝑑𝑊𝑊 (𝑡𝑡),and  
𝜎𝜎 is implied volatility, and 𝜎𝜎 ≈ 𝐼𝐼0(𝑥𝑥)(1 + 𝐼𝐼1(𝑥𝑥)𝜏𝜏) + 𝑂𝑂(𝜏𝜏2) ; where: 

 𝐼𝐼0(𝑥𝑥) =  

{
 
 
 
 

 
 
 
 𝛼𝛼𝐾𝐾𝛽𝛽−1 ;𝑥𝑥 = 0

𝑥𝑥𝑥𝑥(1−𝛽𝛽)
𝑆𝑆1−𝛽𝛽−𝑆𝑆1−𝛽𝛽

𝜈𝜈𝑥𝑥 log  (
√1−𝜌𝜌𝑧𝑧1+𝑧𝑧12+𝑧𝑧1−𝜌𝜌

1−𝜌𝜌 ) ;𝛽𝛽 = 1  ;

𝑥𝑥 log  (
√1−𝜌𝜌𝑧𝑧1+𝑧𝑧12+𝑧𝑧−𝜌𝜌

1−𝜌𝜌 ) ;𝛽𝛽 < 1 

 (28) 

 
9 Constant elasticity of variance (CEV)model is a stochastic volatility model that attempts to 
capture stochastic volatility and the leverage effect. The standard CEV model : 𝑑𝑑𝑆𝑆𝑡𝑡 = 𝜇𝜇𝑆𝑆𝑡𝑡𝑑𝑑𝑡𝑡 +
𝜎𝜎𝑐𝑐𝑒𝑒𝑐𝑐  𝑆𝑆𝑡𝑡

𝛽𝛽𝑑𝑑𝑊𝑊𝑡𝑡, 𝑆𝑆(0) = 𝑆𝑆0.This model is due: Schroder, M. (1989) and Andersen, L. ,Andreasen, 
J.(2000), see Kienitz, Wetterau (2012) 
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And 𝐼𝐼1(𝑥𝑥) = (𝛽𝛽−1)2

24
𝛼𝛼2

(𝑆𝑆𝑆𝑆)1−𝛽𝛽 + 1
4

𝜌𝜌𝛽𝛽𝛼𝛼𝜌𝜌

(𝑆𝑆𝑆𝑆)
1−𝛽𝛽

2
+ 2−3𝜌𝜌2

24 𝜌𝜌2 and where 𝑧𝑧1 = 𝜈𝜈𝜈𝜈
𝛼𝛼 ; 𝑧𝑧 =

𝜈𝜈
𝛼𝛼
𝑆𝑆1−𝛽𝛽−𝐾𝐾1−𝛽𝛽

1−𝛽𝛽  

 
Figure 3. Call prices and implied volatility SABR and OTM, ATM,ITM 

 
Source: Author’s calculations and code provided by : 

https://de.mathworks.com/matlabcentral/profile/authors/3467507 
DD model had been presented by Rubisntein (1983). 

 

 
DD model can be presented in following manner: 
 𝐷𝐷𝑆𝑆𝑡𝑡 = 𝜇𝜇(𝑆𝑆𝑡𝑡 + 𝑎𝑎)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝐷𝐷𝐷𝐷𝑡𝑡(𝑆𝑆𝑡𝑡 + 𝑎𝑎)𝑑𝑑𝑊𝑊𝑡𝑡;𝑆𝑆(0) = 𝑆𝑆0  (29) 
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The only parameter different than the standard Black-Scholes(1973) model is 
𝑎𝑎 > 0.This is called displacement parameter hence the name of the 
pricer.Pricng formulae in DD model is given as see also Rebonato (2002):  

 
𝐶𝐶(𝐾𝐾,𝑇𝑇) = 𝑒𝑒−𝑟𝑟𝑟𝑟((𝑆𝑆(0) + 𝑎𝑎)𝒩𝒩(𝑑𝑑1)− 𝐾𝐾∗𝒩𝒩(𝑑𝑑2))

𝑃𝑃(𝐾𝐾,𝑇𝑇) = 𝑒𝑒−𝑟𝑟𝑟𝑟(𝐾𝐾∗𝒩𝒩(−𝑑𝑑2) − (𝑆𝑆(0) + 𝑎𝑎)𝒩𝒩(−𝑑𝑑1))    (30) 

 
 
Where 𝐾𝐾∗ = 𝐾𝐾 + 𝑎𝑎 and where : 

 𝑑𝑑1 = log(𝑆𝑆(0)+𝑎𝑎
𝐾𝐾∗ )+𝜎𝜎𝐷𝐷𝐷𝐷

2
2 𝑟𝑟 

𝜎𝜎𝐷𝐷𝐷𝐷√𝑟𝑟
;𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎𝐷𝐷𝐷𝐷2 𝑇𝑇    (31) 

 
 
For time dependent volatility we replace 𝜎𝜎𝐷𝐷𝐷𝐷2 with 𝜈𝜈𝐷𝐷𝐷𝐷2 (𝑡𝑡0, 𝑡𝑡1) ≔
∫ 𝜎𝜎𝐷𝐷𝐷𝐷2 𝑢𝑢(𝑑𝑑𝑢𝑢)𝑡𝑡1
𝑡𝑡0  ,parity between Black-Scholes and DD model means : 

𝐶𝐶𝐷𝐷𝐷𝐷(𝐾𝐾,𝑇𝑇) = 𝐶𝐶𝐵𝐵𝐵𝐵(𝐾𝐾,𝑇𝑇).Rebonato (2004) shows that European call option 
ATM (at the money) prices can be recovered reasonably: 

 𝜎𝜎𝐷𝐷𝐷𝐷 ≈
𝐵𝐵0

𝐵𝐵0+𝑎𝑎
𝜎𝜎𝐵𝐵𝐵𝐵

1− 1
24𝜎𝜎𝐵𝐵𝑆𝑆

2 𝑟𝑟

1− 1
24(

𝑆𝑆0
𝑆𝑆0+𝑎𝑎

𝜎𝜎𝐵𝐵𝑆𝑆)
2
𝑟𝑟
                 (32)                         

 
 
Here as in Marris(1999) and Rubinstein (1983), Geske (1977),arbitrage 
pricing mechanism leads to European option call formula: 𝐸𝐸[𝑎𝑎𝑒𝑒𝑡𝑡𝑊𝑊𝑆𝑆0 + 𝑏𝑏𝑆𝑆0 −
𝐾𝐾]+; 10 which resembles Cox,Ross (1976): 𝐸𝐸[𝑒𝑒𝑧𝑧𝑆𝑆0 − 𝐾𝐾]+ and now the 
analytical solution as an adjustment to Black-Scholes formula is: 
 
 𝑃𝑃𝑉𝑉𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒(𝑆𝑆0,𝐾𝐾, 𝑡𝑡, 𝑟𝑟,𝜎𝜎) → 𝑃𝑃𝑉𝑉𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒(𝑎𝑎𝑆𝑆0,𝐾𝐾 − 𝑏𝑏𝑆𝑆0, 𝑡𝑡, 𝑟𝑟,𝜎𝜎𝑟𝑟) 
 (33) 
 
 
Rubinstein (1983) requires debt to be riskless which means 𝛼𝛼 < 1  ,if so 
firms debt will not exceed firms riskless assets, which is opposite from 𝛼𝛼 >
1  where firm's debt exceed its riskless assets see Hull (1997).Next we are 
plotting DD model and DD  SABR model. 

 
10 Here also:𝑎𝑎 = 𝛼𝛼(1 + 𝛽𝛽); 𝑏𝑏 = (1 − 𝛼𝛼 − 𝛼𝛼𝛽𝛽)𝑟𝑟, where 𝛼𝛼 are risky assets, 𝛽𝛽 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑡𝑡

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒  
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Figure 4. DD model for different 𝜶𝜶 ∈ (𝟎𝟎.𝟎𝟎,𝟓𝟓𝟎𝟎,𝟏𝟏𝟎𝟎𝟎𝟎) 

 
Source : Author’s calculations and code provided by : 

https://de.mathworks.com/matlabcentral/profile/authors/3467507 
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Figure 5. DD SABR model, with changing 𝜷𝜷;𝝆𝝆;𝝂𝝂 

 

 

 
 

https://github.com/Mordant-Black/options_SABR_model/blob/master/Volatility%20Smile.ipynb 
 

               
 
Model Parameters 
1) 𝜎𝜎: 0.25827414878228955, 𝛽𝛽: 0.3657704004978997 2) 𝛼𝛼: 7.468394914810275 , 
𝜌𝜌: -0.049519209180403284 , 𝜈𝜈: 0.30576503781656666                                                                  
 
If 𝛽𝛽 = 0 model is stochastic normal, when 𝛽𝛽 = 1 model is stochastic log-
normal. Next we are plotting CDF’s for SABR for different 𝜌𝜌, 𝜈𝜈,𝛽𝛽,𝛼𝛼 
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Figure 6. CDF’s SABR for different 𝝆𝝆,𝝂𝝂,𝜷𝜷,𝜶𝜶 

 

 
 

 
 
 

Economic Development No. 3/2023

197



 
 

 

 
Source : Author’s own calculation based on a code provided at: 

https://de.mathworks.com/matlabcentral/profile/authors/3467507 
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4. IMPLIED VOLATILITY: NEWTON-RAPHSON METHOD 

 
In the Newton’s method the algorithm can be applied iteratively to 
obtain:𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −

𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛−1) ,if lim

𝑥𝑥𝑛𝑛+1→𝑥𝑥∗
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)  = 𝑥𝑥𝑛𝑛,and 𝑥𝑥𝑛𝑛 = 𝑥𝑥∗ + 𝜖𝜖𝑛𝑛 ,where 

𝜖𝜖𝑛𝑛+1 = 𝑓𝑓′′(𝑥𝑥∗)
2∙𝑓𝑓′(𝑥𝑥∗)  𝜖𝜖𝑛𝑛2  .Fixed point theorem states that if ∃𝑓𝑓(𝑥𝑥) ∈ [𝑎𝑎, 𝑏𝑏] ,then 

∃𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏],  and 𝑓𝑓(𝑥𝑥) − 𝑥𝑥 = 0 ⇒ 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 , see Rosenlicht (1968).In our 
case let 𝑉𝑉𝑚𝑚 denotes the market price of an option,𝑉𝑉𝐵𝐵𝐵𝐵(𝜎𝜎) is a price of an option 
obtained by Black-Scholes model  we should have a goal to find volatility 𝜎𝜎𝐼𝐼 
such that :𝑉𝑉𝑚𝑚 = 𝑉𝑉𝐵𝐵𝐵𝐵(𝜎𝜎𝐼𝐼) .Now we will use Newton-Raphson technique the 
initial guess of implied volatility is 𝜎𝜎𝐼𝐼0 afterwards with each step iteration we 

will improve the result: 𝜎𝜎𝐼𝐼𝑛𝑛+1 = 𝜎𝜎𝐼𝐼𝑛𝑛 + 𝑉𝑉𝑚𝑚−𝑉𝑉𝑏𝑏(𝜎𝜎𝐼𝐼𝑛𝑛)
𝜈𝜈(𝜎𝜎𝐼𝐼𝑛𝑛)

 and: 

 𝜈𝜈 = 𝜕𝜕Vb
𝜕𝜕𝜎𝜎 = 𝑆𝑆𝑡𝑡√𝑇𝑇 − 𝑡𝑡𝑡𝑡−𝑞𝑞(𝑇𝑇−𝑡𝑡) 1

√2𝜋𝜋 exp [− 1
2(

log𝑆𝑆𝑡𝑡𝐾𝐾+(𝑟𝑟−𝑞𝑞+𝜎𝜎
2
2  )(𝑇𝑇−𝑡𝑡)

𝜎𝜎√𝑇𝑇−𝑡𝑡 )
2

] 

 (34) 
𝜈𝜈 is the vega of the option.𝑆𝑆𝑡𝑡 is the stock price at time 𝑡𝑡, 𝐾𝐾 is the strike price 𝑟𝑟 is the 
risk-free rate and 𝑞𝑞 is the dividend rate. Or formally the procedure is defined as: 
 

 
𝜎𝜎𝑛𝑛+1 = 𝜎𝜎𝑛𝑛 −

𝒩𝒩(𝑑𝑑1)𝐵𝐵−𝒩𝒩(𝑑𝑑2)𝐾𝐾𝑒𝑒−𝑟𝑟𝑟𝑟−𝐶𝐶∗(𝐵𝐵,𝑇𝑇)
𝐵𝐵𝒩𝒩′(𝑑𝑑1)√𝑇𝑇  𝑠𝑠. 𝑡𝑡.

𝑑𝑑1 = 1
𝜎𝜎√𝑇𝑇 [ln (

𝐵𝐵
𝐾𝐾) + (𝑟𝑟 + 𝜎𝜎2

2 ) 𝑇𝑇] ;𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑇𝑇
  (35) 

Next we are plotting volatility smile (implied volatilities computed and given) 
 

Figure 7. Volatility smile (implied volatilities computed and given) 

 
Source: Author’s own calculation based on a code provided at: 

https://github.com/woutervanheeswijk/Implied_volatility_calculator 
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5. HESTON MODEL  

 
Heston model is due to Heston (1993).In this model spot asset at time 𝑡𝑡  
follows diffusion: 

 
𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝜇𝜇𝜇𝜇𝑑𝑑𝑡𝑡 + √𝑣𝑣(𝑡𝑡)𝑑𝑑𝑑𝑑𝑊𝑊1(𝑡𝑡)

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑘𝑘(Θ − 𝑣𝑣(𝑡𝑡))𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑣𝑣√𝑑𝑑(𝑡𝑡)𝑑𝑑𝑊𝑊(𝑡𝑡)2
   (36) 

 
In previous 𝜇𝜇 = 𝑟𝑟 − 𝑞𝑞 ;  𝑊𝑊1 is a Wiener process,the square of volatility 
follows a CIR process Cox.Ingersoll.Ross model (1985). 11 In previous 
following symbols have this meaning: 
 
𝑟𝑟 is the continuous risk-free rate,𝑞𝑞 is the continuous dividend yield,𝑑𝑑(𝑡𝑡) is the 
asset price at time 𝑡𝑡, 𝑣𝑣𝑡𝑡 is the asset price variance at time 𝑡𝑡 , 𝑣𝑣0 is the initial 
variance of the asset price at t = 0 for (𝑣𝑣0 >  0),θ is the long-term variance 
level for (𝜃𝜃 >  0). κ is the mean reversion speed for the variance for (κ > 
0),σv is the volatility of the variance for (𝜎𝜎𝑣𝑣  >  0),𝑝𝑝 is the correlation between 
the Weiner processes 𝑊𝑊𝑡𝑡 and 𝑊𝑊t

v for (−1 ≤  p ≤  1). 

 

 

 

 

 
11 CIR model follows process where the short-rate is assumed to satisfy the following 
differential equation:𝑑𝑑𝑟𝑟(𝑡𝑡) = 𝑘𝑘(𝜃𝜃 − 𝑟𝑟(𝑡𝑡))𝑑𝑑𝑡𝑡 + 𝜎𝜎√𝑟𝑟𝑡𝑡𝑑𝑑𝑑𝑑(𝑡𝑡), where 𝑘𝑘,𝜎𝜎, 𝜃𝜃 > 0 with 2𝑘𝑘𝜃𝜃 >
𝜎𝜎2 and 𝑑𝑑  is an Brownian motion under risk-free measure. In the CIR model the price of a 
zero-coupon bond with maturity 𝑇𝑇 at the time 𝑡𝑡 ∈ [0,𝑇𝑇] is given as :𝑃𝑃(𝑡𝑡,𝑇𝑇) =

𝐴𝐴(𝑡𝑡,𝑇𝑇)𝑒𝑒−𝑟𝑟(𝑡𝑡)𝐵𝐵(𝑡𝑡,𝑇𝑇),where 𝐴𝐴(𝑡𝑡,𝑇𝑇) = ( 2ℎ𝑒𝑒
(ℎ+𝑘𝑘)(𝑇𝑇−𝑡𝑡)

2

2ℎ+(ℎ+𝑘𝑘)(𝑒𝑒ℎ(𝑇𝑇−𝑡𝑡)−1))

2𝑘𝑘𝑘𝑘
𝜎𝜎2

; 𝐵𝐵(𝑡𝑡,𝑇𝑇) = 2(𝑒𝑒ℎ(𝑇𝑇−𝑡𝑡)−1)
2ℎ+(ℎ+𝑘𝑘)(𝑒𝑒ℎ(𝑇𝑇−𝑡𝑡)−1); 

ℎ = √𝑘𝑘2 + 2𝜎𝜎2  
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Table 1 Characteristic function Heston model 

Characteristic function 
Heston 

𝑓𝑓𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗(𝜙𝜙) = exp(𝐶𝐶𝑗𝑗 + 𝐷𝐷𝑗𝑗𝑣𝑣0) + 𝑖𝑖𝜙𝜙 ln 𝑆𝑆(𝑡𝑡))  

Elements of 
characteristic function 

(1) 

𝐶𝐶𝑗𝑗 = (𝑟𝑟 − 𝑞𝑞)𝑖𝑖𝜙𝜙𝑖𝑖 + 𝑘𝑘𝑘𝑘
𝜎𝜎𝑣𝑣2

[(𝑏𝑏𝑗𝑗 − 𝑝𝑝𝜎𝜎𝑣𝑣𝑖𝑖𝜙𝜙 + 𝑑𝑑𝑗𝑗)𝑖𝑖

− 2 ln(
1 − 𝑔𝑔𝑗𝑗𝑒𝑒^(𝑑𝑑𝑗𝑗𝑖𝑖) 

1 − 𝑔𝑔𝑗𝑗
) 𝑛𝑛] 

Elements of 
characteristic function 

(2) 

𝐷𝐷𝑗𝑗 =
𝑏𝑏𝑗𝑗 − 𝑝𝑝𝜎𝜎𝑣𝑣𝑖𝑖𝜙𝜙 + 𝑑𝑑𝑗𝑗

𝜎𝜎𝑣𝑣2
( 1 − 𝑒𝑒𝑑𝑑𝑗𝑗𝜏𝜏

1 − 𝑔𝑔𝑗𝑗𝑒𝑒𝑑𝑑𝑗𝑗𝜏𝜏
) 

Elements of 
characteristic function 

(3) 

𝑔𝑔𝑗𝑗 =
𝑏𝑏𝑗𝑗 − 𝑝𝑝𝜎𝜎𝑣𝑣𝑖𝑖𝜙𝜙 + 𝑑𝑑𝑗𝑗
𝑏𝑏𝑗𝑗 − 𝑝𝑝𝜎𝜎𝑣𝑣𝑖𝑖𝜙𝜙 − 𝑑𝑑𝑗𝑗

 

Elements of 
characteristic function 

(4) 

𝑑𝑑𝑗𝑗 = √(𝑏𝑏𝑗𝑗 − 𝑝𝑝𝜎𝜎𝑣𝑣𝑖𝑖𝜙𝜙)
2 − 𝜎𝜎𝑣𝑣2(2𝑢𝑢𝑗𝑗𝑖𝑖𝜙𝜙 − 𝜙𝜙2) 

Inverted characteristic 
function CDF 𝑃𝑃𝑗𝑗(𝑥𝑥, 𝑣𝑣,𝑇𝑇; ln𝐾𝐾) = 1

2 + 1
𝜋𝜋∫ 𝑅𝑅𝑒𝑒 [

𝑒𝑒−𝑖𝑖𝑖𝑖 ln𝐾𝐾 𝑓𝑓𝑗𝑗(𝑥𝑥, 𝜈𝜈,𝑇𝑇;𝜙𝜙)
𝑖𝑖𝜙𝜙 ]

∞

0
 𝑑𝑑𝜙𝜙 

Call(𝐾𝐾) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐾𝐾) = 𝑆𝑆(𝑡𝑡)𝑒𝑒−𝑞𝑞𝜏𝜏𝑃𝑃1 − 𝐾𝐾𝑒𝑒−𝑟𝑟𝜏𝜏𝑃𝑃2 
Put (𝑃𝑃) 𝑃𝑃𝑢𝑢𝑡𝑡(𝐾𝐾) = 𝑆𝑆(𝑡𝑡)𝑒𝑒−𝑞𝑞𝜏𝜏𝑃𝑃1 − 𝐾𝐾𝑒𝑒−𝑟𝑟𝜏𝜏𝑃𝑃2 − 𝐾𝐾𝑒𝑒−𝑟𝑟𝜏𝜏 − 𝑆𝑆(𝑡𝑡)𝑒𝑒−𝑞𝑞𝜏𝜏 

Source : see  Heston (1993) , Kienitz, Wetterau (2012)  and Albrecher et al .(2012) 

 
Next on the following figure we present Heston model with implied volatility 
and moneyness.12 

 
12 Moneyness is description of a derivative relating its strike price to the price of its 
underlying asset 
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Figure 8. Heston model with moneyness 

 
 

Source: Authors’ calculation based on a code provided  at: https://github.com/jcfrei/Heston 
next we will graphically depict movement of Heston’s model implied volatility and 
𝑑𝑑𝑑𝑑 = 𝑇𝑇

𝑁𝑁 time,  
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Figure 9. Heston model implied volatility and time and Heston model implied volatility 
and strike price 

 
Source : Authors own calculation 
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Parameters on the Heston model implied volatility are: 𝑟𝑟 = 0.05 risk free rate 
,𝜅𝜅 = 2.0 mean reversion speed, long-term variance 𝜃𝜃 = 0.04; volatility of 
volatility 𝜎𝜎 = 0.3,𝜌𝜌 = −0.5 correlation between asset price and 
volatility,𝜈𝜈0 = 0.04 initial volatility, 𝑆𝑆(0) = 100initial asset price ,𝑁𝑁 = 1000 
number of time steps, M=1000, Montecarlo paths and parameters for the 
Heston implied volatility and Strike price are : 𝜅𝜅 = 2.0;𝜃𝜃 = 0.04; 𝜎𝜎 = 0.3; 
𝜌𝜌 = −0.8; 𝜈𝜈0 = 0.04,𝑟𝑟 = 0.05, 𝑆𝑆(0) = 100;𝐾𝐾 = 100,𝑇𝑇 = 1.  Previous two 
graphs can be plotted in one mesh graph   
 
 

Figure 10. Heston model implied volatility (IV) surface 

 
Source : Authors own calculation 

 
 
𝜈𝜈0 = 0.04,𝑟𝑟 = 0.05, 𝑆𝑆(0) = 100;𝐾𝐾 = 100,𝑇𝑇 = 1, 𝜅𝜅 = 2.0, 𝜃𝜃 = 0.04, 𝜎𝜎 =
0.5, 𝜌𝜌 = −0.5, 𝑆𝑆(0) = 100;𝐾𝐾 = 100,𝑇𝑇 = 1 
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6. Conclusion  
 
This paper confirmed that when it comes to market and model comparison this 
paper concludes that SABR model, Displaced diffusion (DD) model and Heston 
model are very close to market results. When it comes to implied volatility and strike 
price (SABR, DD) and Heston model are better when compared implied volatility 
with moneyness (strike price /spot price 𝐾𝐾/𝑆𝑆).When 𝛽𝛽 is optimal SABR implied 
volatility and strike price movements are almost identical to market. In the Heston 
model for all the levels of moneyness implied volatility is almost identical to actual 
market volatility or realized volatility. Black-Scholes Fourier pricing and Carr-
Madan option pricing proved that there is an inverse relation between striker option 
prices and spot prices. In the Black-Scholes method the higher 𝛼𝛼 i.e. the risky asset 
the lower is the value of European call option. A European option is a financial 
contract that gives the holder a right but not an obligation to buy and sell the 
underlying asset from the writer at the time of expiry for a pre-determined price. 
Displaced Diffusion (DD) models are capable of modelling skewed implied 
volatility structures. In the DD model for different 𝛼𝛼 ∈ (0.0,50,100) paths 
generated by the model are continuous since the stochastic driver is a Brownian 
motion. This model showed that volatility is timely dependent.  
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